Semi-supervised logistic discrimination via regularized Gaussian basis expansions
نویسندگان
چکیده
The problem of constructing classification methods based on both classified and unclassified data sets is considered for analyzing data with complex structures. We introduce a semi-supervised logistic discriminant model with Gaussian basis expansions. Unknown parameters included in the logistic model are estimated by regularization method along with the technique of EM algorithm. For selection of adjusted parameters, we derive a model selection criterion from Bayesian viewpoints. Numerical studies are conducted to investigate the effectiveness of our proposed modeling procedures.
منابع مشابه
Robust Semi-supervised Learning for Biometrics
To deal with the problem of sensitivity to noise in semi-supervised learning for biometrics, this paper proposes a robust Gaussian-Laplacian Regularized (GLR) framework based on maximum correntropy criterion (MCC), called GLR-MCC, along with its convergence analysis. The half quadratic (HQ) optimization technique is used to simplify the correntropy optimization problem to a standard semi-superv...
متن کاملMultiview Hessian regularized logistic regression for action recognition
With the rapid development of social media sharing, people often need to manage the growing volume of multimedia data such as large scale video classification and annotation, especially to organize those videos containing human activities. Recently, manifold regularized semi-supervised learning (SSL), which explores the intrinsic data probability distribution and then improves the generalizatio...
متن کاملDiscriminative Clustering by Regularized Information Maximization
Is there a principled way to learn a probabilistic discriminative classifier from an unlabeled data set? We present a framework that simultaneously clusters the data and trains a discriminative classifier. We call it Regularized Information Maximization (RIM). RIM optimizes an intuitive information-theoretic objective function which balances class separation, class balance and classifier comple...
متن کاملDeceptive Review Spam Detection via Exploiting Task Relatedness and Unlabeled Data
Existing work on detecting deceptive reviews primarily focuses on feature engineering and applies off-the-shelf supervised classification algorithms to the problem. Then, one real challenge would be to manually recognize plentiful ground truth spam review data for model building, which is rather difficult and often requires domain expertise in practice. In this paper, we propose to exploit the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009